Astronomers reveal first image of black hole at Milky Way’s centre

The photo of the Sagittarius A* black hole was made by eight synchronised radio telescopes around the world.

fuzzy image of black hole
This image released by the Event Horizon Telescope Collaboration, Thursday, shows a black hole called Sagittarius A* at the centre of the Milky Way galaxy that is 4 million times more massive than the sun [Event Horizon Telescope Collaboration via AP]

An international team of astronomers on Thursday unveiled the first image of a supermassive black hole at the centre of our own Milky Way galaxy, a cosmic body known as Sagittarius A*.

Astronomers believe nearly all galaxies, including our own, have these giant black holes at their centre, where light and matter cannot escape, making it extremely hard to get images of them. Light gets chaotically bent and twisted around by gravity as it gets sucked into the abyss along with superheated gas and dust.

The image, produced by a global team of scientists known as the Event Horizon Telescope (EHT) Collaboration, is the first, direct visual confirmation of the presence of this invisible object, and comes three years after the very first image of a black hole from a distant galaxy.

The image depicts not the black hole itself, because that is completely dark, but the glowing gas that encircles the phenomenon, which is four million times more massive than the Sun, in a bright ring of bending light.

“These unprecedented observations have greatly improved our understanding of what happens at the very centre of our galaxy,” said EHT project scientist Geoffrey Bower, of Taiwan’s Academia Sinica.

Bower also said in a statement provided by the French National Centre for Scientific Research (CNRS) that the observations had offered “new insights on how these giant black holes interact with their surroundings”.

The results are published in The Astrophysical Journal Letters.

The University of Arizona’s Feryal Ozel called the black hole “the gentle giant in the centre of our galaxy” while announcing the new image.

Sagittarius A*, abbreviated to Sgr A*, which is pronounced “sadge-ay-star”, owed its name to its detection in the direction of the constellation Sagittarius.

Its existence has been assumed since 1974, with the detection of an unusual radio source at the centre of the galaxy.

In the 1990s, astronomers mapped the orbits of the brightest stars near the centre of the Milky Way, confirming the presence of a supermassive compact object there, work that led to the 2020 Nobel Prize in physics.

Though the presence of a black hole was thought to be the only plausible explanation, the new image provides the first direct visual proof.

Because it is 27,000 light years from Earth, it appears the same size in the sky as a doughnut on the Moon.

Capturing images of such a faraway object required linking eight giant radio observatories across the planet to form a single “Earth-sized” virtual telescope called the EHT.

These included the Institute for Millimetre Radio Astronomy (IRAM) 30-metre (98.4-foot) telescope in Spain, the most sensitive single antenna in the EHT network.

The EHT gazed at Sgr A* across multiple nights for many hours in a row, similar to long-exposure photography.

The group used the same process when it released the first image of a black hole in 2019.  It was from a galaxy 53 million light years away and is called M87* because it is in the Messier 87 galaxy.

The Milky Way black hole is much closer, about 27,000 light years away. A light year is 5.9 trillion miles (9.5 trillion kilometers).

The two black holes bear striking similarities, despite the fact that Sgr A* is 2,000 times smaller than M87*.

“Close to the edge of these black holes, they look amazingly similar,” said Sera Markoff, co-chair of the EHT Science Council, and a professor at the University of Amsterdam.

Both behaved as predicted by Einstein’s 1915 theory of general relativity, which holds that the force of gravity results from the curvature of space and time, and cosmic objects change this geometry.

Despite the fact Sgr A* is much closer to us, imaging it presented unique challenges.

Gas in the vicinity of both black holes moves at the same speed, close to the speed of light. But while it took days and weeks to orbit the larger M87*, it completed rounds of Sgr A* in just minutes.

This artist?s concept released October 30, 2017 shows a black hole with an accretion disk - a flat structure of material orbiting the black hole and a jet of hot gas, called plasma
Artist’s concept of black hole with an accretion disk, a flat structure of material orbiting the black hole, and a jet of hot gas [File: NASA/JPL-Caltech/Handout via Reuters]

The researchers had to develop complex new tools to account for the moving targets.

The resulting image, the work of more than 300 researchers across 80 countries across a period of five years, is an average of multiple images that revealed the invisible monster lurking at the centre of the galaxy.

Scientists are now eager to compare the two black holes to test theories about how gasses behave around them, a poorly understood phenomenon thought to play a role in the formation of new stars and galaxies.

Probing black holes, in particular, their infinitely small and dense centres known as singularities, where Einstein’s equations break down, could help physicists deepen their understanding of gravity and develop a more advanced theory.

Source: News Agencies